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Abstract
The complex scaling method provides scattering wavefunctions which
regularize resonances and suggest a resolution of the identity in terms of such
resonances, completed by the bound states and a smoothed continuum. But,
in the case of inelastic scattering with many channels, the existence of such a
resolution under complex scaling is still debated. Taking advantage of results
obtained earlier for the two channel case, this paper proposes a representation
in which the convergence of a resolution of the identity can be more easily
tested. The representation is valid for any finite number of coupled channels
for inelastic scattering without rearrangement.

PACS numbers: 02.60.Lj, 03.65.Nk, 24.10.Eq, 24.30.−v, 34.50.−s

1. Introduction, notation

As is well known, the complex scaling method (CSM) converts the description of resonances
by non-integrable Gamow states into one by square integrable states while leaving the discrete
spectrum unchanged [1]. Cuts describing the continuum are rotated, however, but this may be
advantageous, since they are thus disentangled when their thresholds differ from one another.
(We are not interested, in this paper, in the case of channels with identical thresholds.) It is
then expected that the continuum corresponding to such rotated cuts makes a much smoother
contribution to the calculation of collision amplitudes, level densities, strength functions
and sum rules [2, 3], since narrow resonant processes have been assumed to be peeled out
explicitly by the CSM. The CSM Hamiltonian, unfortunately, is no longer Hermitian, and it
is not obvious that a resolution of the identity in terms of its bound states, resonances and
presumably damped continuum is possible. For the one channel case, convincing arguments

0305-4470/04/4811575+15$30.00 © 2004 IOP Publishing Ltd Printed in the UK 11575

http://stacks.iop.org/ja/37/11575


11576 B G Giraud et al

were advanced a long time ago [4] to prove that this resolution exists. More recently [5],
a detailed investigation of the case of two channels, coupled by straightforward potentials,
generated a contour integration of the usual Green’s function which provided the identity
resolution. The task was made reasonably easy by the small complication of the Riemann
surface in that case. The purpose of the present paper is to capitalize on the methods used for
that two channel case and attempt a generalization to any finite number of channels, despite
the more complicated nature of the relevant Riemann surface. We shall assume, naturally, that
there already exists, derived from single poles and usual cuts, a resolution of the identity for
the initial Hamiltonian, before its modification by complex scaling. Our problematics would
be meaningless otherwise.

Several earlier studies, in particular by [6, 7], were concerned with a description of
resonances with square integrable states, without complex scaling. They did not restrict to
the consideration of just simple poles of the S-matrix and investigated how one might, as
rigorously as possible, define initial wave packets for the description of decaying states; the
non-purely exponential nature of their decays received detailed attention, via the analysis of
their time-dependent evolutions. The present paper, however, will be content with a Gamow
definition of resonances, by means of simple poles; our aim is just to generate a resolution of
the identity, with time-independent states extending to asymptotic regions. For earlier searches
of a complete basis of states, including resonances, but within a compact interaction volume,
we may refer to the review by [8] of R-matrix methods and their extensions. See also [9] and
in particular the comparison of ‘class B’ and ‘class D’ theories.

In this paper, we shall again assume that all potentials Vin(r) driving the channels and their
couplings are local and so short ranged, Gaussian-like for instance, that the 2N Jost solutions
of the N coupled equation system,

−ψ ′′
ij (kj , r) +

N∑
n=1

[
e2iθVin(e

iθ r) +

(
�i(�i + 1)

r2
− k2

i

)
δin

]
ψnj (kj , r) = 0,

i, j = 1, . . . , N, (1)

exist and are analytical in the whole complex domain of all the momenta kj . The radius r runs
from 0 to +∞, obviously, and the number N of channels is taken as finite. As an additional
technicality we also assume, naturally, that the products Vinψnj do not diverge for r → 0 when
singular solutions of equations (1) are considered.

We select the threshold of the lowest channel as the origin of the complex energy plane,
hence E ≡ k2

1. The other channels with their physical thresholds E∗
j , which are real and

positive numbers, now define channel momenta according to, Ej = k2
j = E − e2iθE∗

j . Note
that, given a real number E∗

j defining a physical threshold, the usual complex scaling where
p2 becomes e−2iθp2 and r becomes eiθ r does not change E∗

j and rotates the corresponding
cut by an angle −2θ . But here, we have a slightly different representation, because the
Hamiltonian has been multiplied by e2iθ . Hence kinetic operators in our Hamiltonian H, see
equations (1), are just −d2/dr2, every cut rotates back into being ‘horizontal’and starts from
e2iθE∗. For time-dependent studies, it will make sense to scale time, conjugate of energy, by
a factor e−2iθ . This will prevent those resonant wave packets, the energies of which have a
positive imaginary part as eigenvalues of H, from exploding when t → +∞.

Also in this paper no rearrangement is allowed; channels are defined by just internal
excitations of the projectile and/or the target, hence all reduced masses are equal. Finally we
exclude from this paper the consideration of abnormal thresholds; we shall only discuss the
case of ‘square root thresholds’. This is generic enough.
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It is understood here and from now on that a first subscript, such as i or n, denotes the
component of each wave ψ in channel i or n, then that any superscript, ±, or second subscript,
j, denotes the boundary condition which defines ψ . For a Jost solution f ±

.j , the boundary
condition that we choose is ‘asymptotic flux e±i(kj r−�j π/2) in channel j and no asymptotic flux
in the other channels’. It is well known that for r → 0, the components of such Jost solutions
are proportional to (kir)

−�i (2�i − 1)!!. For a regular solution ϕ.j , the boundary condition that
we choose sits at r = 0 and reads, ‘limr→0(kir)

−�i−1ϕij (r) = 0 ∀i �= j, while, for i = j, then
limr→0(kj r)

−�j −1ϕjj (r) = 1/(2�j + 1)!!.
Following Newton [10], it is convenient, given E and r, to set the column vectors ϕ.j into

a matrix Φ(E, r) of regular solutions and the Jost solutions f +
.j (resp. f −

.j ) into a similar matrix
f +(E, r) (resp. f−). It is also convenient to note that Φ, viewed as a function of the kj as if
these were independent momenta, is even under any reversal of a kj into −kj . Such is not the
case for f +; analytic continuations in either energy or momenta planes can introduce one (or
several) f −

.j into f +.
For our oncoming argument we must use the Wronskian matrix with matrix elements the

Wronskians W
(
f +

.m, ϕ.n

)
of the Jost solutions f +

.m with the regular ones ϕ.n. This, for s waves,
is the transpose of f+ at r = 0,

W(E) = f̃ +(E, 0), (2)

and for other angular momenta is only a slight modification of f̃+(E, 0). (Rather than just
f̃+(E, 0) one must use limits of products (kir)

�i f +
ij

/
(2�i − 1)!! at r = 0, explicitly, but we

will disregard this technicality.) Green’s function G is then found as

G(E, r, r ′) = Φ(E, r)[W(E)]−1 f̃ +(E, r ′) if r < r ′,
G(E, r, r ′) = f +(E, r)[W̃(E)]−1Φ̃(E, r ′) if r > r ′. (3)

Here each tilde ∼ means transposition; we refer to [10] or to appendix A of [5] for the
derivation of such formulae for G. Despite different formulae whether r > r ′ or r < r ′, and
the lack of hermiticity, G is symmetric, namely G(r, r ′) = G(r ′, r).

It will be noted that the CSM, as we describe it by the system of equations (1), locates
thresholds on a segment of the complex E plane with slope 2θ, extending from E = 0 to
e2iθE∗

N, and that the channel cuts are rotated back into being ‘horizontal’. Conversely, bound
states lie on a negative semiaxis rotated by 2θ and resonances are rotated by 2θ as well. This
slight change of representation changes nothing to the physics, obviously. For trivial technical
reasons [5], we normalize energy units so that E∗

N = 4. Also we shall use a short notation,
k ≡ k1 and K ≡ kN . We show in figure 1 the cut energy plane in an illustrative, four channel
situation when θ = π/6, E∗

2 = 1.5 and E∗
3 = 3.5 and E∗

4 = 4.
Equipped with this slightly unwieldy formalism, we can now investigate whether

there exists a representation, and an integration contour, such that the traditional integral,
I = ∫

dE G(E, r, r ′), calculated in two different ways, generates a resolution of the identity.
This question of a representation and a contour is the subject of section 2, the main part of
our argument. Additional considerations on the two ways of calculating this integral make the
subject of section 3. A discussion and conclusion are proposed in section 4.

2. Representations and contours

2.1. Energy plane

From figure 1 it is intuitive that one could start, for instance, from +∞ along the lower rim of
the lowest channel cut, return to the origin, E = 0, proceed to +∞ again on the upper rim,
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ReE

1
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Figure 1. E plane. Physical cuts for a four channel case when θ = π/6, E∗
2 = 1.5, E∗

3 = 3.5
and E∗

4 = 4. Lowest channel, heavy full lines, highest channel, heavy dashed lines, intermediate
channels, lighter full lines. The dotted segment with slope π/3 is the locus of thresholds (big dots)
in this representation.

then join there the lower rim of the second cut, return to the threshold of this second cut, go
to e2iθE∗

2 + ∞ along the upper rim, join the third cut lower rim at infinity, etc, until arriving at
e2iθE∗

N + ∞ along the upper rim of the highest channel. Then the contour would be closing at
infinity by means of an almost complete circle, counterclockwise, terminating at the starting
point, namely at +∞ on the lower rim of the lowest channel.

Along such a contour, it would be necessary to investigate the behaviours of the ingredients
f +, W and Φ of G. Furthermore, information is needed about the singularities of G inside
the contour; indeed, residues of simple poles are essential for a calculation of

∫
dE G(E) by

Cauchy’s theorem; one also needs reasons why no singularities higher than simple poles occur.
The representation discussed in the next subsection makes easier the needed investigation,

for it opens two of the cuts and limits the discussion to situations where all momenta have
semipositive imaginary parts, Im kj � 0.

2.2. Pseudomomentum plane

A generalization from [5], where there were two channels only, the present ‘P representation’
consists of joining the upper rim of the lowest cut and the lower rim of the highest cut, and in
opening both cuts, by rational formulae,

k = P + Q2/P, K = P − Q2/P, (4)

where Q = eiθ makes a short notation for our scaling of energies such that E∗
N = 4 and

k2 − K2 = 4Q2. Trivially, P is the average (k + K)/2 of k and K . The point is, despite
an obvious failure to open additional cuts, P also gives the ‘dominant’ part of any other
momentum when Im P → +∞. Indeed, when |P | is large, say |P | 	 2, then an asymptotic
value can be defined for kj , j �= 1, j �= N, according to the rule,

kj ≡ (k2 − Q2E∗
j )

1
2 = (P 2 + 2Q2 − Q2E∗

j + Q4/P 2)
1
2 = P + Q2(1 − E∗

j /2)/P + O(P −2).

(5)

Thus the semicircle at infinity in the upper P plane corresponds to Im kj > 0,∀j . This is
of critical value for the zoology of our Jost functions and it is expected that this semicircle
properly closes the integration contour under design.
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-1 -0.5 0.5 1
ReP

0.2

0.4

0.6

0.8

1

ImP

Figure 2. P plane. Cuts for the same four channel case, θ = π/6, E∗
2 = 1.5, E∗

3 = 3.5 and
E∗

4 = 4. Open cut for lowest channel, heavy full line. Open cut for highest channel, heavy dashed
line. Intermediate channel cuts, not open, lighter full lines. The dotted segment is the locus of
thresholds (big dots) in this P representation.

Set now P = x + iy and short notation c = cos 2θ and s = sin 2θ . A trivial calculation
separates the real and imaginary parts of the (complex) energies driving each channel,

(x2 + y2)2 Re
(
k2
j

) = [(x2 + y2 + s)(x + y) + (x − y)c]

× [(x2 + y2 − s)(x − y) + (x + y)c] − E∗
j (x

2 + y2)2c, (6)

and

(x2 + y2)2 Im
(
k2
j

) = 2[(x2 + y2)x + xc + ys][(x2 + y2)y + xs − yc] − E∗
j (x

2 + y2)2s (7)

and it is trivial to recover the images, in this new representation, of the cuts displayed in
figure 1. Polar coordinates, with P = peiη, can also be used to describe the j th cut from
equation (7) by

p2 sin 2η +
sin(4θ − 2η)

p2
= (E∗

j − 2) sin 2θ. (8)

Results are shown in figure 2 for the same special case as figure 1. As in [5], the lowest
channel is represented by the heavy, shoulder shaped line, that starts from −∞ on the real P
axis, bends up, then goes back into the origin P = 0, where it terminates with a slope 2θ .
Along the curve, k is real and runs from −∞ to +∞, covering both rims of the initial cut. The
threshold k = 0 is represented by P = iQ = ei(θ+ 1

2 π). Partner points where k ↔ −k obtain
under the symmetric transformation P ↔ −Q2/P . In the same way, for the highest channel,
K runs with real values along the heavy dashed line, from −∞ at P = 0 to +∞ at the end
of the positive Re P semiaxis, via K = 0 for P = Q. The transform, P ↔ Q2/P, makes
partners with opposite values of K .

The other cuts remain cuts. Their thresholds lie on the image, shown as a dotted line
again, of the segment already pointed out at the stage of figure 1. Because both Re

(
k2
j

)
and

Im
(
k2
j

)
vanish for such points, it is easy to eliminate E∗

j between the right-hand sides of
equations (6) and (7) and obtain the condition for such a locus,

x2 + y2 = 1, (9)

a very simple result indeed. With |P | = 1, the positions of the thresholds are easy to obtain.
The special cases j = 1 and j = N give the argument η ≡ Arg P as η = θ + π/2 and



11580 B G Giraud et al

-0.1 -0.05 0.05 0.1 0.15 0.2 0.25
ReP

1

2

3
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ImP

Figure 3. P plane. Again θ = π/6. Cut for the channel defined by E∗
2 = 1.5. The centre line,

between dots, is the cut. The cut then continued for negative energies in the channel. Additional
lines, lower rim (leftmost curve) and upper rim (rightmost curve), respectively. Both rims extended
below threshold. Heavy line bar, connection between extended rims.

η = θ, respectively. This was already known from [5]. The function sin 2η + sin(4θ − 2η),

see equation (8), decreases monotonically when η increases from θ to θ +π/2, hence a unique
solution for each E∗

j , and an obvious symmetry about θ + π/4 corresponding to the symmetry
about E∗

j = 2. Then each intermediate cut generates, from equation (7), an image which joins
its threshold to the origin P = 0, while kj , a real number along this image, runs from 0 to
±∞, according to the rim. The image lies between the heavy full and dashed lines and, being
pinched between them at P = 0, also reaches the origin with slope 2θ . While the pinching
makes numerics slightly difficult, it is easy to verify analytically from equations (6) and (7)
that infinitesimally away from both rims of such an intermediate cut, but inside the wedge
created by the heavy line curves, Im kj remains positive.

To illustrate our full control of the various Im kj provided by this P representation,
whether inside the wedge or near the positive infinity semicircle, we show in figure 3 the
cut corresponding to E∗

2 , and its continuation beyond threshold. By ‘beyond’, we mean still
cancelling Im k2

2, while Re k2
2 becomes more and more negative. This allows reaching the

‘semicircle’. Simultaneously, we generate rims of the cut, and beyond again below threshold.
To generate rims, we use equation (7), or as well equation (8), with E∗

2 replaced by E∗
2 − 0.2

and E∗
2 + 0.2 for the lower and upper rim, respectively. (The choice ±0.2 was made for

graphical convenience, but we tested much smaller intervals, naturally.) The dots represent
P = 0, where the channel energy is infinite, and the threshold, where it vanishes by definition.
Like the cut, the rims are pinched by the wedge.

Then we show in figure 4 the trajectory of k3 when P follows this cut from P = 0, to
the threshold and beyond. Note that, E2 being real along the line, then the imaginary part
of E3 = E2 + e2iθ (E∗

2 − E∗
3 ) is obviously negative. This does not prevent a choice of k3

with Im k3 > 0, generating the leftmost trajectory in figure 4. Simultaneously, we show the
trajectories of k2 from both rims of the same cut. The left-hand side (when seen in figure 3) rim
induces Re k2 → −∞ when P → 0, with an infinitesimally positive Im k2. Conversely, the
right-hand side rim induces Re k2 → +∞ when P → 0, with still an infinitesimally positive
Im k2. When we go from either rim towards the upper semicircle at infinity, this induces
Im k2 → +∞, as expected. The rims can be connected by any small path, see the bar above
the threshold in figure 3, and the values of k2 along the rims can be smoothly matched, see the
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Imk

Figure 4. k2, k3 planes. Still θ = π/6, E∗
2 = 1.5 and E∗

3 = 3.5. Leftmost curve, trajectory of k3
when P follows the central line of figure 3. Intermediate curve, trajectory of k2 for extended lower
rim, see the leftmost curve in figure 3. Rightmost curve, trajectory of k2 induced by extended
upper rim, see the rightmost curve in figure 3. Heavy line curved bar, connection trajectory for k2
when P turns around the threshold, below it.

curved bar in figure 4, the trajectory of k2 when P follows the bar in figure 3. Generalizations
to every kj in every part of the wedge are trivial.

2.3. Contour

To synthesize this section, the P representation defines a physical sheet similar to the physical
sheet of the energy plane. The region of interest is that region above the two curves which
open the cuts for the lowest and the highest channels, while cuts remain for the intermediate
channels. All momenta inside the wedge, and all the way to the upper semicircle at infinity,
can be defined with positive imaginary parts. A contour can be found, following all cuts and
closing at infinity in the upper plane.

The intuition which was present in the E representation can be substantiated in the P plane.
Start from −∞ on the real axis, follow the ‘opener curve’ which corresponds to the lowest
channel, all the way to P = 0. From there, follow the lower rim of the cut corresponding to
the second channel, back to its threshold, then turn around the threshold to follow its upper
rim, down to P = 0. In turn, follow the lower rim of each intermediate channel, then its upper
rim. After bouncing N − 1 times at P = 0, follow the ‘opener curve’ corresponding to the
upper channel, until P → +∞ on the real axis. Then close the contour by means of the upper
semicircle at infinity. In the next section, we shall investigate what happens to the integral,
I = ∫

dE G(E, r, r ′), when considered along this contour in the P plane.

3. Three contributions to the Green’s function integral

3.1. Upper semicircle

At infinity in this upper P plane, the integration weight, dE = 2(P − Q4/P 3) dP, boils down
to 2P dP . All the N distinct Jost solutions boil down to exp

[
i
(
Pr − 1

2�jπ
)]

in their respective
‘flux channel j ’, while vanishing in the other channels. At the same time, the N distinct
regular solutions similarly boil down to sin

(
Pr − 1

2�jπ
)/

P in their respective flux channel
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and vanish in the other channels. The Wronskian matrix boils down to the N-dimensional unit
matrix.

Assume now r > r ′, for instance, and thus consider the second of equations (3). The
product f +[W̃]−1Φ̃ boils down to a diagonal matrix. Its j th diagonal element reads∫

sc

2 dP ei(P r−�j π/2) sin

(
Pr ′ − �j

π

2

)
, (10)

and can be easily calculated by reducing the semicircle back to the real P axis. The result does
not depend on j,

−i
∫ −∞

∞
dP ei(P r− 1

2 �j π)

[
exp

(
iPr ′ − i�j

π

2

)
− exp

(
i�j

π

2
− iPr ′

)]

= 2iπ(–)�j [δ(r + r ′) − δ(r − r ′)]. (11)

It is trivial to verify that the same result is obtained if r < r ′. Furthermore the term δ(r + r ′)
cancels out in the space of regular radial waves. Hence the contribution Isc of the semicircle
makes nothing but the multichannel identity, multiplied by (−2iπ). Note that, differing from
[2], this identity is not multiplied by a factor depending on θ, since for us the ends of the
semicircle, −∞ and +∞, both lie on the real P axis.

3.2. Continuum

It makes no difference here whether we consider the contribution of one of the ‘opener lines’
or that of one of the intermediate cuts for, in both cases, we group partner terms. Such
partners either come from a transform P ↔ ±Q2/P or from opposite rims of the intermediate
cut under consideration. What is important to note is that momenta retain their finite and
positive imaginary parts and do not change when we compare two partner points, except
that momentum specific to the opener line or the cut. For that momentum, which is real,
‘partnership’ means kj ↔ −kj , with still an infinitesimal positive imaginary part. Keeping in
mind that Φ is even under such a momentum flip, the contribution of such a continuum thus
reads, if r > r ′ for instance,

Ij =
∫ ∞

0
2kj dkj Dj (E, r)Φ̃(E, r ′), (12)

where Dj (E, r) represents the following difference between partners,

Dj (E, r) = f +(E, r)[W̃(E)]−1 − f +(−kj , r)[W̃(−kj )]
−1, (13)

a discontinuity across the cut. The notation used here takes advantage of the fact that
dE = 2kj dkj , and that kj is a convenient label along the line or the cut. The first term,
f +(E, r)[W̃(E)]−1, on the right-hand side of equation (13) clearly comes from the upper rim.
The notation that we use for the second term, f +(−kj , r)[W̃(−kj )]−1, indicates that, because
of analytic continuation in the physical sheet around the threshold, one Jost solution f −

.j now
makes the j th column of f and that of W̃. All other columns are unchanged, and this strong
similarity reduces the difference Dj to be a rank one dyadic. An elementary proof of this
dyadic result was given in appendix C of [5]. Nothing changes in the argument if r < r ′.

As a consequence of the dyadic nature of Dj , and of the symmetry G(E, r, r ′) =
G(E, r ′, r), hence of the same symmetry for discontinuities across cuts, there exists as a
column vector a solution φ.j of equation (1) that is able to represent symmetrically both
Dj (E, r)Φ̃(E, r ′) and Φ(E, r)D̃j (E, r ′) in a self-dual way as an outer product,

Ij =
∫ ∞

0
2kj dkj

φ.j (E, r)φ̃.j (E, r ′)
D(E)

. (14)
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This solution belongs to the set of regular solutions, naturally, because of the regularity of G
at both r = 0, and r ′ = 0, illustrated by the presence of Φ in equations (3). The exact natures
of this φ.j and of the ‘normalizing’ denominator D are discussed in the appendix.

At this stage, the full integral along the full contour thus gives the sum of the multichannel
identity and ‘pseudoprojectors on the continuum’, one pseudoprojector for each channel,

i

2π

∫
dE G(E, r, r ′) =




δ(r − r ′) 0 . . . 0
0 δ(r − r ′) . . . 0
. . . .

0 0 . . . δ(r − r ′)




+
i

π

N∑
j=1

∫ ∞

0
kj dkj

φ.j (E, r)φ̃.j (E, r ′)
D(E)

. (15)

The next subsection shows what happens if the same integral is evaluated by means of the
Cauchy theorem.

3.3. Residues at poles

We assumed that, before complex scaling, namely for θ = 0, there existed an identity
resolution in terms of unscaled bound states and unscaled scattering states. In other words,
we assumed that the corresponding, unscaled G(E) shows only isolated, simple poles, besides
the physical cuts. Such poles can be on the real E axis of the physical sheet, describing bound
states, or away from this axis, then describing resonances or antiresonances. The point is,
now, that the CSM cannot change the nature of such poles [1]. Within our description by
equations (1), the CSM just rotates such poles by 2θ in the energy representation, along
circular arcs, concentric around E = 0. In the P representation, the images of such arcs are
also concentric arcs, with angular extension θ only. This is trivially seen from the equation
which, for each initial position ε of a pole, defines those values of P which represent e2iθ ε,

(P + e2iθ/P )2 = e2iθ ε. (16)

Indeed, θ disappears from this equation if one sets P = eiθP0, where P0 solves for the initial
position ε. It can be concluded that only simple poles will be found when a finite θ is used for
our CSM. Note, incidentally, that for ε real and negative (bound states), the P representation
will align poles along the axis with polar angle θ + π/2, further than the circle with radius 1
that we found as the locus of thresholds. There will be no such alignment for resonances.

For the calculation of I by Cauchy’s theorem, poles are not due to either f or Φ, since
these, as functions of E or P, are regular. Only the divergence of W−1 can create poles. The
situations of interest are those when the roots of the determinant, det W, are located inside
the integration contour. We know that such is the case for the bound states. Depending upon
θ, some resonances may also rotate into the domain. It is already known that only simple,
isolated poles occur. The only question to solve is, what is the residue of G at such a pole.

Residues of G at its poles will now be obtained from derivatives d/dE. That is equivalent
to a calculation in the P representation, in any case, and slightly easier. We shall use short
notation in which the dependence of Φ, f +, W, upon r, and/or r ′ and/or E will be most often
understood. However, at those energies Eν where a pole occurs, we use an explicit subscript
ν to specify that such quantities Φ, . . . , W are evaluated at Eν .

Poles occur because of W−1. Hence, we must only find the residue,

Rν = lim
E→Eν

(E − Eν)W−1(E), (17)

and form the matrix product, ΦνRν f̃ +
ν and its transpose f +

ν R̃νΦ̃ν .
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At a (simple!) root Eν of det W(E), there is necessarily one, and just one, null right
eigenvector �ν of W. Similarly there is one, and just one, null left eigenvector �′

ν . We write
them as columns and normalize them by the condition,

�̃′
ν�ν = 1. (18)

Then the divergent part of W−1 in a neighbourhood of Eν is nothing but the truncation,

W−1
tr = �ν�̃

′
ν

�̃′
νW(E)�ν

, (19)

where there is an explicit dependence on E in the denominator. This denominator, a number,
vanishes at E = Eν . As a matrix element of W it is nothing but the Wronskian of the following
two waves, F ≡ f +�′

ν and ξ ≡ Φ�ν . The former, F, is irregular, the latter, ξ, is regular.
While �ν and �′

ν do not depend on E, since they were defined at E = Eν, both F and ξ

depend on E, via f + and Φ. When their Wronskian vanishes, F and ξ become proportional
to each other, and there exists a number c such that Fν = cξν . This special wave is both a
mixture of regular solutions and a mixture of Jost solutions, with positive imaginary parts in
the momenta driving all Jost solutions. Therefore, it decreases exponentially in all channels
when r → ∞ and it is square integrable as well as regular. As expected it represents either a
bound state or a regularized resonance.

According to equations (17) and (19), the residue under study comes from just the
reciprocal of the derivative of the Wronskian of F and ξ,

Rν = �ν�̃
′
ν

d[�̃′
νW(E)�ν]/dE|E=Eν

. (20)

In short, we must calculate the derivative of a Wronskian with respect to the energy,
d[�̃′

νW(E)�ν]/dE. To help manipulations with Wronskians, define an operator matrix
U with matrix elements the CSM potentials, completed by the centrifugal barriers and the
thresholds,

Uij = e2iθUij (e
iθ r) + δij

[
e2iθE∗

j +
�j (�j + 1)

r2

]
. (21)

Then elementary, but slightly tedious manipulations, which are already described in [10] or in
appendix B of [5], give the remarkably simple result,

d[�̃′
νW(E)�ν]/dE|E=Eν

= −c

∫ ∞

0
dr ξ̃ (Eν, r)ξ(Eν, r). (22)

Then the constant c cancels out between this and the numerators of f +
ν R̃νΦ̃ν and ΦνRν f̃ +

ν ,

which make the same, symmetric formula in any case, whether r > r ′ or r < r ′, since
Fν = cξν .

Summing upon all such residues obtained at roots Eν of det W above the ‘opener’ curves
in the P upper half-plane, the contour integral reads,

I(r, r ′) = −2iπ
∑

ν

Φ(Eν, r)�ν�̃νΦ̃(Eν, r
′)∫ ∞

0 dr ′′�̃νΦ̃(Eν, r ′′)Φ(Eν, r ′′)�ν

. (23)

Here we state again that the column vector �ν is the null, right-hand side eigenvector of
W(Eν), namely W(Eν)�ν = 0, then the column vector Φ(Eν)�ν of wavefunctions is
the wavefunction of the bound state or resonance, and the denominator plays the role of
a ‘Euclidean-like square norm’. This denominator is non-vanishing; this corresponds to the
hypothesis of single, isolated poles. All these are labelled by ν, a discrete index, or as well by
Pν, an isolated root of W if viewed as a function of P .
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3.4. Completeness

Since the three contributions Isc,
∑

j Ij and I are obviously related by Isc +
∑

j Ij = I,

it is trivial to equate i
2π
Isc, the multichannel identity, with the difference between i

2π
I, the

pseudoprojector on both bound states and resonances, and i
2π

∑
j Ij , the latter term making

the pseudoprojector upon the continuum for all channels. Naturally, in practical calculations,
a cutoff and some amount of discretization will be necessary to integrate such continuum
terms, but the P representation provides a suitable frame for testing the convergence of such
a resolution for sum rules, level densities and similar observables. Note that, because of
the use of complex, self-dual bras and kets in the resolution, such cutoff and discretization
manipulations may generate spurious imaginary parts for the expectation values of Hermitian
observables. For a discussion and possible interpretation of imaginary parts in individual
matrix elements, we refer to [11]. But, when summed upon all discrete and integral terms
provided by the resolution, such imaginary parts must add up to a negligible, spurious noise
compared to the real parts. This requested cancellation makes one more criterion to validate
numerical operations.

4. Discussion and conclusion

Once again we used the ABC theorems [1] to locate the discrete spectrum at trivially rotated
positions deduced from the discrete spectrum of an initial, Hermitian Hamiltonian. The
topological similarity provided by the CSM rotation warrants that, as long as there are no
double poles or higher singularities with the initial Hamiltonian, the same will be true with
the CSM Hamiltonian.

Then it was not very difficult to find a representation which allows a suitable contour
integration of the Green’s function. There was still a slightly complicated Riemann surface
to handle, for the number of cuts was reduced to N − 2 only [12], but we took great care,
including a few numerical, illustrative examples, to show that all cuts in the new representation
are well understood, all thresholds are easily located, all complex momenta to be used for
proofs have positive imaginary parts in a physical domain of a suitable sheet and in general
that all technicalities are sound.

This proof of the CSM completeness for N channels is restricted to a finite number
of well-separated channels, normal square root threshold singularities, in a purely inelastic
situation, without rearrangement, and with short ranged forces. The case of long range forces
makes a more difficult question, indeed [13, 14]. But our restrictions still allow a large class
of practical problems, and for instance in nuclear physics, a very large number of collective
resonances can be described by the coupled channel equations that we studied.

Acknowledgment

BGG thanks the Hokkaido University for its hospitality during part of this work.

Appendix

We give here in some detail a description of that regular solution φ.j which accounts for
the discontinuity of the Green’s function across a cut. For the sake of pedagogy, we set the
channel number to be N = 4 and shall consider only what happens for, e.g., the second cut.
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Generalizations are obvious and left as an exercise for the interested reader. In a condensed
notation, we write the upper rim Wronskian matrix as

Wu =




a b c d

e f g h

i j k l

m n o p


 (A.1)

where, for instance, b is the Wronskian of f +
.1 with ϕ.2 and o is the Wronskian of f +

.4 with ϕ.3.
The inverse of Wu reads, trivially,

W−1
u = (detu)

−1




a′ e′ i ′ m′

b′ f ′ j ′ n′

c′ g′ k′ o′

d ′ h′ l′ p′


 , (A.2)

where detu is the determinant of Wu and the prime symbols denote the corresponding cofactors.
For the lower rim of the second cut a substitution occurs for the second row of Wu, hence the
lower rim Wronskian matrix reads

Wl =




a b c d

q r s t

i j k l

m n o p


 , (A.3)

where, for instance, t is the Wronskian of f −
.2 with ϕ.4. Accordingly the inverse matrix

becomes,

W−1
l = (detl )

−1




a′′ e′ i ′′ m′′

b′′ f ′ j ′′ n′′

c′′ g′ k′′ o′′

d ′′ h′ l′′ p′′


 , (A.4)

where double prime symbols denote new cofactors, but the cofactors of {q, r, s, t} are the same
as those of {e, f, g, h}.

Again with a transparent, condensed notation, we set, for the upper and lower rim,
respectively,

f̃u =




A B C D

E F G H

I J K L

M N O P


 , f̃l =




A B C D

Q R S T

I J K L

M N O P


 . (A.5)

with, for instance, {A,B,C,D} ≡ {
f +

11, f
+
21, f

+
31, f

+
41

}
, and {E,F,G,H } ≡{

f +
12, f

+
22, f

+
32, f

+
42

}
, while {Q,R, S, T } ≡ {f −

12, f
−
22, f

−
32, f

−
42}. For r < r ′, the discontinuity

to be studied corresponds to the transpose of equation (13), and reads, in a condensed notation,

D̃2(r
′) = W−1

u f̃u(r ′) − W−1
l f̃l(r ′). (A.6)

The subscript 2 for the cut and the r ′ dependence will be now understood and we shall use
trivial identities to analyse

D̃ = [
W−1

l + W−1
l (W)W−1

u

]
f̃u − W−1

l (f̃u + f̃) = W−1
l (W)W−1

u f̃u − W−1
l f̃, (A.7)
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where W = Wl − Wu and f̃ = f̃l − f̃u. The point is, both modifications  are just
substitutions for second rows; they boil down to dyadics,

W =




0
1
0
0


 ⊗ [q − e r − f s − g t − h],

(A.8)

f̃ =




0
1
0
0


 ⊗ [Q − E R − F S − G T − H ].

(Our use of the tensor product symbol ⊗ is actually superfluous; we just want to stress the
matrix product of a column by a row.) The next point is, then, that a global dyadic form for D̃
emerges,

D̃ = W−1
l




0
1
0
0


 ⊗ (

[q − e r − f s − g t − h]W−1
u f̃u

− [Q − E R − F S − G T − H ]
)
. (A.9)

Furthermore, from the very definition of matrix inversion, we see that

[e f g h]W−1
u = [0 1 0 0], (A.10)

hence

[−e −f −g −h]W−1
u f̃u = −[E F G H ], (A.11)

and D̃ simplifies into

D̃ = (detl )
−1




e′

f ′

g′

h′


 ⊗ (

[q r s t]W−1
u f̃u − [Q R S T ]

)
. (A.12)

For r < r ′ the complete discontinuity Φ(r)D̃(r ′) of G(r, r ′) thus reads

detl detuΦ(r)D̃(r ′) = φ(r)�̃(r ′), (A.13)

with

φ = e′ϕ.1 + f ′ϕ.2 + g′ϕ.3 + h′ϕ.4, (A.14)

and

� = (qa′ + rb′ + sc′ + td ′)f +
.1 + (qe′ + rf ′ + sg′ + th′)f +

.2

+ · · · + (qm′ + rn′ + so′ + tp′)f +
.4 − detuf

−
.2 . (A.15)

Both φ and � are column vectors and relate to the second cut, hence they should actually read
φ.2 and �.2 in a notation compatible with equations (14) and (15). We omitted such subscripts,
for the sake of conciseness.

It may be convenient to take advantage of the cofactor nature of all the coefficients
a′, . . . , p′. This gives indeed the formal, but condensed formula,

φ = det




a b c d

ϕ.1 ϕ.2 ϕ.3 ϕ.4

i j k l

m n o p


 . (A.16)
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Similarly, we find the formal result,

� = − det




a b c d f +
.1

e f g h f +
.2

i j k l f +
.3

m n o p f +
.4

q r s t f −
.2


 , (A.17)

because all coefficients such as

qa′ + rb′ + sc′ + td ′ = det




q r s t

e f g h

i j k l

m n o p


 , . . . , qm′ + rn′ + so′ + tp′

= det




a b c d

e f g h

i j k l

q r s t


 , (A.18)

can themselves be interpreted, after keeping track of signs, as cofactors for the last column of
the determinant shown by equation (A.17).

In the 2N -dimensional space of solutions, it is known that the 2N Jost solutions and the
N regular ones are related by a formula such as,

f− = ΦW−1w + f +w−1W−W−1w, (A.19)

where W is the same as Wu, while W− is the analogue of W if one replaces each
f +

.m by its partner f −
.m . Then w is a diagonal matrix, defined from the Wronskians

W
(
f +

.m, f −
.n

) = −2ikmδmn. It will be noted from equation (A.19) that, if we expand an
f −

.m on the basis spanned by all the ϕ.n and all the f +
.n , the regular components of f −

.m are
provided by the mth column of the matrix product W−1w.

It is known that � always belongs to the subspace of N regular solutions. In our illustrative
example where N = 4 and we studied the second cut, our �, according to equation (A.15), is
a superposition of five solutions, namely all the f +

.n and one f −
.n only, f −

.2 . After an expansion
of f −

.2 on the basis spanned by the ϕ.n and the f +
.n, all its irregular components must cancel

out those preexisting irregular components of � seen from equation (A.15). (For the sake of
rigor, we verified, by brute force calculations when N = 2, 3 and 4, that the components f +

.n

do vanish out.) Thus we may consider the regular components only, coming from just f −
.2 .

The weight of f −
.2 is, according to equation (A.15), −detu. We must therefore find the

second column of

−detuW−1w = −




a′ e′ i ′ m′

b′ f ′ j ′ n′

c′ g′ k′ o′

d ′ h′ l′ p′







−2ik1 0 0 0
0 −2ik2 0 0
0 0 −2ik3 0
0 0 0 −2ik4


 , (A.20)

hence the final result,

� = 2ik2(e
′ϕ.1 + f ′ϕ.2 + g′ϕ.3 + h′ϕ.4) = 2ik2φ. (A.21)

The generalization, �.j = 2ikjφ.j is obvious. For any channel number N and any j th cut,
both φ and � correspond to the j th column of W−1, hence to the cofactors of the j th row of
W. There is no need here to specify Wu or Wl , because the relevant cofactors are the same
on both rims of the cut. The fact that � and φ are the same except for the factor 2ikj gives the
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same, symmetrical result whether r is larger or smaller than r ′. And the denominator present
in equations (14) and (15) reads, when all factors are collected,

D(E) = detu detl
2ikj

. (A.22)
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